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Abstract

Based on the first-order shear deformation theory (FSDT), the Hamilton’s principle and the Maxwell equation, this
paper presents the coupling equations to govern the electric potential and the displacements of the functionally graded
cylindrical shell with surface-bonded PZT piezoelectric layer, and subjected to moving loads. The frequencies equations are
obtained by using displacement functions and one electric potential function. The modal analysis technique and
Newmark’s integration method are used to calculate the displacements and sensory electric potential of the shell subjected
to moving loads. The effects of the moving velocities of the loads, volume fraction exponents @ of functionally graded
materials (FGMs) and temperature environment on the dynamic responses of shells are investigated. An analytical
approximate equation is obtained to describe the relationship between critical velocities of moving loads and natural
frequencies of shells. The present approach is validated by comparing the natural frequencies with the result presented by
Ng et al. In addition, numerical results show the relationship between the displacements and sensory electric potential of
the shell. The present work shows that some meaningful and interesting results presented in this paper are helpful for the
application and the design of smart sensory structures.
© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Smart structures, consisting of piezoelectric materials integrated with structural systems, have been an
important research object since many years due to their unique feature to couple electric and mechanical
characteristics. In recent years, the development of integration of piezoelectric materials to the composite
structures is paid special attentions to their potential applications of aerospace and aircraft structures, civil
structures, marine and automobiles which require intelligent functions [1,2]. A smart structure that contains
the main structure and the distributed piezoelectric sensor/actuators can sense the excitations induced by its
environment and can also generate control forces to eliminate the undesirable effects or to enhance the
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desirable effects. Yang et al. [3] developed a generic electromechanical impedance model for the two-
dimensional PZT—structure interaction systems. To closely simulate the real situation, the PZT transducers
were assumed to interact with the host structure at four edges. The results for a plate structure were in good
agreement with the experimental measurements. Yang and Hu [4] presented an electromechanical impedance
model for health monitoring of cylindrical shell structures. By investigating the interaction between the PZT
transducers and a typical cylindrical shell structure, the electromechanical impedance of the PZT transducers
is obtained. Several analytical and finite element studies have been presented for hybrid beams and plates with
thickness poled actuators [5,6]. D’Ottavio et al. [7] solved the free-vibration problem of multilayered shells
with embedded piezoelectric materials. Closed-form solutions are given for the free-vibration problem of
simply supported, orthotropic piezoelectric laminates. The formulations are applied to study the influence
of the electromechanical coupling on the resonant frequencies. Vel et al. [8] presented an analytical solution
for the static deformation and steady-state vibration of simply supported hybrid cylindrical shells consisting of
fiber-reinforced layers with embedded piezoelectric shear sensors and actuators. Suitable displacement and
electric potential functions that identically satisfy the boundary conditions at the simply supported edges are
used to reduce the governing equations of static deformation and steady-state vibrations. Besides, temperature
variation can bring about voltage or charge generation in piezoelectric sensors [9], which is referred to as
pyroelectric effect. Tzou et al. [10] found from their numerical studies that temperature variation considerably
influences the electric potential distribution on both piezoelectric sensor and actuator layers.

Due to the advantages of being able to withstand severe high-temperature gradient while maintaining
structural integrity, functionally graded materials (FGMs) have been receiving much more attention in
engineering communities, especially in applications for high-temperature environment [11,12]. Some
researchers have developed various approximated theories and computation methods for FGM structures.
The extension of the unified formulation (UF) to FGM structures was provided in Refs. [13,14]. Comparisons
with three-dimensional solutions confirmed the efficiency of the extension of UF to FGM structures analysis,
even for very thick structures.

Piezoelectric FGM structures will have the advantages of FGMs and piezoelectric materials linked together.
Hybrid piezoelectric FGM structures are one type of FGM piezoelectric structures, where a substrate made of
FGMs is integrated with surface-bonded piezoelectric actuator and/or sensor layers.

Mirzavand and Eslami [15] presented a thermal buckling analysis for functionally graded cylindrical shells
that are integrated with surface-bonded piezoelectric actuators and are subjected to the combined action of
thermal load and constant applied actuator voltage. He et al. [16] studied the vibration control of the FGM
plates with integrated piezoelectric sensors and actuators by a finite element formulation based on the classical
laminated plate theory. Ng et al. [17], Liew et al. [18,19] have explored the application of piezoelectric
sensor—actuator for active control of vibration of FGMs structural members both under ambient conditions as
well as varying temperature environment.

Dynamical problems of beams, plates and cylindrical shells subjected to an action of moving loads already
have a long history in mechanics [20-25]. A moving load causes the radial displacements of an axi-symmetric
shell to be several times higher than that produced by the static application of the same load [26]. On the other
hand, the moving sources (e.g., heat fluid-conveying, impacting waves, the moving of heat field and work
pieces during machining operations etc.) will often occur in the rocket, aircraft, nuclear vessels and chemical
pipes, as well as the industry of shipbuilding.

In this study, the deformation of FGM shells with piezoelectric layers is to satisfy the limitation of first-
order shear deformation theory (FSDT), in which material properties of FGM are considered as graded across
the shell thickness according to a power-law, in terms of the volume fractions of the constituents. For the
piezoelectric layer, temperature distribution is linear across its thickness, and for the FGM layer, temperature
distribution is nonlinear. The Hamilton’s principle, the Maxwell equation and the FSDT considering rotary
and in-plane inertias have been utilized to model the dynamics characteristic of FGM cylindrical shells with
surface-bonded PZT piezoelectric layers, and subjected to moving loads. By using the modal analysis
technique and Newmark’s integration method, a better approximation is obtained, and a faster convergence
method is achieved for the dynamic responses of FGM cylindrical shells subjected to moving loads. Finally,
the natural frequencies from the present method are compared with those results found in the open literature,
and a good comparison is obtained between the results.
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2. Theoretical formulations

An FGM cylindrical shell with mean radius of R and the length L is shown in Fig. 1. A deformable
piezoelectric layer is perfectly bonded on its outer surface as sensor. The z-axis is the thickness coordinate for
both piezoelectric layer and FGM layer. The thickness of the FGM layer is denoted by / and that of the
piezoelectric layer is hp. The piezoelectric layer is polarized along the thickness direction. The displacement
components in the x, 0 and z directions are denoted by u, v and w, respectively.

The material properties of FGM cylindrical shells are accurately modeled, by using a simple rule of
mixtures. The volume fraction is described by a spatial function as follows:

]
P(z) = (Z +hh/2> (0<P<00) (1)

where @ expresses the volume fraction exponent. The combination of these functions gives rise to the effective
properties of FGMs [11]. The temperature change referenced to the stress free state (the room temperature Ty)
is considered as

AT(x,0,z,t) = I'(x,0,0)T(2)

The stress resultants of the FGM layer are given by
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Fig. 1. Coordinate system of the FGM cylindrical shell with surface-bonded PZT layer under moving loads.
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where the effective elasticity coefficients Q;(z) and thermal expansion coefficients a5 (z) of the FGM layer are
given by Kadoli and Ganesan [27]. &y, €, Vg, ¥+ and 7, is the mid-surface strains of the FGM layer, k., kg
and i,y 1s the mid-surface curvatures.

According to the state of generalized plane stress of the thin shell assumption [28], the constitutive
equations of piezoelectric layer can be expressed by the direct and the converse piezoelectric equations,
respectively.
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Effective constants of the piezoelectric layer are given by
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where &y, &, 7.9, 7, and 7. is the strains of an arbitrary point in the piezoelectric layer, and %, 67, <), t/_and
sz is the corresponding stresses. {D. Dy D.}', {E, Ey E.}7 and {p. Po p:}T represent the electric
displacements, electric fields and pyroelectric constants of the piezoelectric layer, respectively. Qf;, ej, i
and o denote the elastic constants, piezoelectric constants, dielectric constants and thermal expansion

coefficients, respectively.
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In the above formula, the electric fields are expressed as a function of the electric potential ¢ in the
curvilinear coordinate system as follows:

1) 1 0o el
X — T K> Ey=— PY 2= T AC 6
YT ' T R+:za0 oz ©)
The piezoelectric layer considered in this paper take as a sensor and the electric potential is induced by
elastic deformation in the piezoelectric layer. The distribution of electric potential in the piezoelectric layer is
given by [29]

@(x,0,z,1) = P(zp)p(x,0,1) (7
zp 1s the local thickness coordinate with respect to the piezoelectric layer mid-plane, zp =z — z,

zo = (h+ hp)/2. The function P(zp) is defined by

h 2
P(zp) = zj = (7”) (®)

The strains of an arbitrary point &y, &, 7.9, 7. and 7,. in Egs. (4) and (5) are related to the mid-surface
strains and curvatures of the FGM layer [27]. The stress resultants of piezoelectric layer are computed using
Eq. (4) as follows:
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where the thermal force resultants of the piezoelectric layer are defined as follows:
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The piezoelectric resultants of the piezoelectric layer are defined as follows:
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As shown in Fig. 1, a row of loads Pi(¢) (i =1,2,..., Np) move along the longitudinal axis at constant
speed V. The load function p(x, t) describing the action on the shell is expressed as [30]

Np
PO, 1) =Y PUD3(x — x)8(0 — o) Ui(1) (11)
i=1

where

Ui(t) = H\(t — t;-)[1 — Hao(t — t;i-y — 11)]

xi=V(t—ti) (O<x;<L), 1, =LV

d(.) denotes Dirac delta function, H,(¢) (i = 1,2) denotes Heaviside unit step function, (x;0,) denotes
the location of the moving load P;(¢) at time ¢, and #,_; denotes arriving time of the i-th load at the shell.
The corresponding work of the moving loads can be expressed as [24]

Wp= /p(x, Hw(x, 0, H)RdOdx (12)
A

The potential energy Vy, of the axial loading (N,) is taken as [31]

1 ow\ > o\ 2
Vye== ] |No|=— Nol=—
Mo 2//1[ O(Gx) " °<ax>
For thin shells, as are the cases used here, the transversal displacement is assumed to be constant
through the thickness. Based on the FSDT and Hamilton’s principle, the equations of motion for an FGM

cylindrical shell with surface-bonded piezoelectric layer under axially load Ny and moving loads are as
follows [28]:

RdOdx (13)
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where ¢, and ¢, are the slope in-plane of x—z and 0—z, respectively. The strains, curvature expressions and
mass terms of Egs. (2), (3), (9), (10) and (14) are defined as

—(Qy + OF) = (I + 1Yo + (15 + ID) b, (14)
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Py (2) 1s the effective mass density of the FGM layer, and pF is the mass density of the piezoelectric layer.
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Utilizing Egs. (2), (3), (9), (10) and (15), the equations of motion can be expressed in terms of generalized
displacement (u, v, w, ¢, ¢y) as follows:

Lyu+ Lo+ Lizw + Liad, + Lisy + Ligy + ar I, = (I + I1)ii + (I ~|—1§)é.5x
P

o“v
Loju+ Lygv + Loaw 4 Lagy + Lasty 4+ Lagth + No—— + axl'y = (I + ID)i 4 (I + D)y

ox2
o*w »
Lyyu+ Lypv+ Lysw + Laa¢p . + Lispg + Lagy + No=— o +azsl +p(x,t) = +1))w
Layu+ Lypv + Lyaw 4 Lag + Lastg + Lagih + asl”’. = (I + IY)it 4+ (I3 + I5) .,
Lsiu+ Lsyv + Lsaw + Lsa, + Lssog + Lsgl + asI'y = (I + 13)i + (I + I5) ¢, (17)
The Maxwell equation [8] is
hi2the (3D 10Dy  0D. 1
—_— —D,|dz=0 18
/h/z (6x+ 69+6+R‘)Z (1%

Utilizing Eq. (5), the charge equilibrium Eq. (18) can be expressed as follows:
Leiu+ Lexv + Lesw + Leap + Lespy + Leoty = as1 ', + aex Iy + agsI” (19)

where L; (i,j = 1,2,...,6) and some coefficients in Eqs. (17) and (19) are defined in Appendix A.

Here, the two ends of the FGM cylindrical shell with surface-bonded piezoelectric layer are considered as
simply supported, so that a solution for the motion Eqs. (17) and the charge equilibrium Eq. (19) can be
described by

M N
Up(t) COS Ayyx cos nf, v = Z Z V() sin A, x sin n6

M N
=3y
m=0 n=0 m=1 n=1
M N
Z Z Wpn(2) sin A, x cos n0, Z Z @ (t) €OS Apx cos nl
=1 n=0 m=0 n=0
M N M N
Z Z (D) sIn Ay, x sin n0, W = Z Z Vo (2) sin Ay X cos nl (20)
=1 n=1 m=1 n=0

where 4,, = mn/L, n represents the number of circumferential waves and m represents the number of axial
half-waves.

The generalized forces related to the thermal load in Egs. (17) and (19) can also be expanded in double
Fourier series

all’, = Z qul(z) cos Ayx cos n, aI'y= Z Z @on(D) sin A, x sin nd

m=0 n= m=1 n=
asl = Z qun3(l) sin y,x cos nf, asl’, = Z Z Gra(t) €OS Apx cos nb
m=1 n=0 m=0 n=0
M N
asl'y = Z Z Qs (1) sin Ayx sin nl,  ae I, + aex 'y + aesT = Z Z Gune(?) SIN Ay X cos nl 21
m=1 n= m=1 n=0

Substituting Egs. (20) and (21) into Egs. (17) and (19), yields:
(11 + If:)il'mn(l) + (12 + If)il.smn(l) + Tllumn(t) + T12Umn(l)
+ T13Wmn(t) + T14¢mn(t) + TlSq_smn(l) + Tlélpmn(t) = qmnl(t) (22)

(Il + IlE)i}mn(t) + (12 + Ig)(zmn(t) + T21umn([) + [T22 + )“1211N0]Umn(t)
+ T23‘/an(t) + T24¢mn(l) + Tas (ﬁmn(t) + T26¢mn(t) = qmn2(t) (23)
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(Il + 11 )Wmn(l) + T3lumn(t) + TSZUmn(Z) + [T33 + /LmNO]Wmn(l) + T34¢mn(l)

Np
+ T35Pm(1) + T36W 1 (£) = @3 (1) + %;Pi(t) sin A,x;(t) cos nty

Iy + IE)ityn(t) + (I3 + TE)ryn(0) + Tt thyn(1) + T30 (2)
+ T43Wmn(l) + T44¢mn(l) + T45(/5mn(t) + T%wmn(l‘) = qmn4(l)

(s + I5)ipn(®) + (I3 + 1) P () + Ts1ttn(£) + 520, (1)
+ T53Wmn(l) + T54¢mn(l) + T55(/Smn(t) + TSGwmn(t) = qmnS(l)

Te1tmn(t) + T20mn(t) + Te3Wnn(t) + T6aryn() + T5Ppn () + To6Wpn(D) = Qe ()

where the unknown constants 7;; can be determined by operators L; in Egs. (17) and (19).
From the Eq. (27), the induced electric potential coefficient v,,,(f) is obtained as follows:

lPmn(l) = TLGG[qm%(Z) - Tﬁlumn(t) - T62”mn(t) - T63Wmn(l) - T64¢)n1n(l)) - T65q§mn(l)]

Substituting Eq. (28) into Egs. (22)—(26), the following governing equations are obtained:

1
[M]{g} + ([KE] " T {Km}{sz}T> {a = {Fu} +{Fr}+ {Frp}

where
I +17 0 0 L+15 0
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Ty T T3 Ty Tis
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[Kel= | T3 T3 T+ /,No T Tss
Ty Ty T4 Tas Tas
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{(Kpi}' ={T16 Ta T3 Tas Tse}» (Kp2)' ={Te1 Ter Tes Toa Tes)

{q} - {umn Umn ¢ml1 (Z)mn}T
{(Fu}T =00 iipjp(z) sin A,,x;(t) cos nfy 0 0
M L - i mi 0

{FT}T = {qmnl(t) qmn2(l) qmn3(t) qmn4(t) qmnS(l)}

1
{FTP} = _T—{KPl }q}nné(t)
66

779

24)

(25)

(26)

27)

(28)

(29)

(Fu)', {F7}T and {F7p) are the generalized forces related to the moving loads, the thermal load and the

thermo-piezoelectric coupling, respectively.
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We set {F} = {Fy}+ {Fr} + {Frp} =0, and substitute

umn(l) = “gmem, Umn(l) = Ugmeiwt, Wmn(t) = ngeiu)t’ cee
into Eq. (29) and obtain the following 5 x 5 system of eigenvalue problem:
(K] — o’ [M]D{4} = {0} (30)
where {A}T = {0, o WO " d_)gm}, the nontrivial solution of the eigen-equation (30) gives the natural

frequencies of the FGM cylindrical shell with surface-bonded piezoelectric layer.
3. Numerical results and discussions
The magnitudes of the moving loads in this paper are identical (P;(f) = Py = constant). The generalized

forces related to the moving loads, the thermal load and the thermopiezoelectric coupling are
expressed as

T 2Py K
{Fy}' =400 EZ sin A,x;(f) cos ny 0 0
p)

46l3 m B
{0000 0} n#0
1 dags
1 —I{K 1 — (=1 m I -0
{FTP} = _T_{KPI }anﬁ([) = T66{ Pl} nm[ ( ) ] (t) n
66 0 120

In this study, in-plane uniform distribution of temperature is considered as
I'(x,0,0) =T@) (AT(x,0,z,1) = T(2)I'(1)) (31

The temperature distribution along the thickness of the shell can be obtained by solving a steady-state heat
transfer equation [32]. For the piezoelectric layer, temperature distribution across the thickness is considered
as linear:

TO - Tm h h h
= _— —— ] — <l <L =
T(z)=T, + I (Z 2) T (2 <z< 5 + hp) (32)

and for the FGM layer:

=T / prERL (_ﬁsﬁﬁ) (33)
S0 dz ko (2) ) -j2 Kegr (2) 2 2

where T, T,, are the temperature of the inner surface and the outer surface of the FGM layer, respectively.
ke is the effective thermal conductivity of the FGM layer. Ty is the room temperature (zero thermal stress
state, 7o = 300K). T,, can be obtained by utilizing the temperature continuous conditions between the FGM
layer and piezoelectric layer, and the heat transfer equation. The temperature difference between the inner
surface and the outer surface of the shellis Tog = T — T.

The ceramic and the metal materials of the functionally graded layer in this study are considered as zirconia
and aluminum [28]. The properties for the two materials are listed as

Aluminum

E,=70GPa, v, =0.3, p, =2707 kg/m3, kpy =204W/mK, o, =23 x 107%°C

Zirconia

E,=151GPa, v.=03, p,=3000kg/m?, k., =209W/mK, o =10x10"°°C
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The piezoelectric layer is made of PZT-4. The material constants are given by Ramirez et al. [33] and
Ganesan and Kadoli [34]. The other calculation data are given by

R=1m, h/R=001, hp/R=0001, Py=S50KN, 90=§, I'(#) = sin 100z.

3.1. Free-vibration studies on the FGM shell with surface-bonded piezoelectric layer

Free-vibration natural frequency characteristics are presented for the FGM shell with surface-bonded
piezoelectric layer, and the effects of wavenumber and axial compressive load on the free-vibration natural
frequencies of the shell are investigated.

For cylindrical shells of intermediate length, as are the cases used here, the buckling load is given by
Timoshenko and Gere [35]

. ER
~R[B(1—0]'?

and the axial load can be nondimensionalized as Nog = No/No., and E, v are the material constants of
Aluminum in Eq. (34). The nondimensional natural frequencies € is defined as [36]

Q> = (I,R*/E)o?*, E =E,h/(1 -02) (35)

(34)

Ocr

From Fig. 2, it is seen that as the axial half-waves m (m<4) increases, the lowest fundamental frequency gets
shifted to the right-hand side of the curve. The behavior is similar to conventional shells [36]. When vibration
modes (m, n) are (1,1), (2,1), (3,1) and (4,1), the fundamental frequencies are almost same. Moreover, when
m=>=5, the fundamental frequency of the FGM cylindrical shell with surface-bonded piezoelectric layer
increases as the circumferential mode n increases, which are not agreement with those for homogeneous
isotropic cylindrical shells presented by Radwan et al. [36].

It is clear from the results in Table 1 that when the ratio of length to radius L/R of the cylindrical shell
increases, the fundamental frequency decreases. It can also be observed in Table 1 that the effect of
piezoelectric layer on the fundamental frequency is obvious.

3.2. Displacements and sensory response of the shell under moving loads

In this paper, the initial conditions are supposed to be zero, and dynamic responses at the point (x; = L/2,
0, = /4, z = (h+ hp)/2) are obtained. Fig. 3 shows convergence of time response w(x, 0;,¢) under a moving

2.4

2.0+

1.6

G 1.24

0.8

0.4

Fig. 2. Nondimensional natural frequency () versus vibration modes (m, n) for the FGM cylindrical shell with surface-bonded
piezoelectric layer (Ng = 0.5N.,, L/R = 1.0, ® = 1.0).



782 G.G. Sheng, X. Wang | Journal of Sound and Vibration 323 (2009) 772-789

Table 1
Non-dimensional natural frequency € versus non-dimensional axial compressive load Ny/N,, for the FGM cylindrical shell with surface-
bonded piezoelectric layer (n =1, n =1, ® = 1.0).

L/R NO/N(')'
0.0 0.2 0.4 0.6 0.8
Elastic effect only 1.0 0.9363 0.9319 0.9276 0.9232 0.9188
Piezoelectric effect 0.9403 0.9359 0.9316 0.9272 0.9228
Elastic effect only 1.1 0.9118 0.9081 0.9044 0.9007 0.8970
Piezoelectric effect 0.9150 09114 0.9077 0.9039 0.9002
Elastic effect only 1.2 0.8846 0.8814 0.8782 0.8750 0.8718
Piezoelectric effect 0.8873 0.8841 0.8809 0.8777 0.8745
0.006
—=— M=6,N=6
0.005 —o— M=10,N=10
_ —A— M=15N=15
E 0.004 —o— M=20,N=20
= .
2 0.003 1
=
2
g 0.002
=
= 0.001 +
[~
0.000
-0.001
T T T T T T

. — — .
0.00 0.02 0.04 0.06 0.08 0.10 0.12
Time t (s)

Fig. 3. The convergence of time response w(xi, 0y, ) for various M and N (L/R = 4.0, ® = 1.0, V' = 80m/s).

load (Np = 1). The time responses are calculated for M,N = 6, 10, 15 and 20 in model expansion, respectively.
It is concluded that the series (see Eq. (20)) is able to provide a good approximation for the response, and the
results using the series converge fast. All the plots are drawn for M,N = 15, because the time responses
obtained from M,N = 15 and 20 in modal expansion are approximately in good agreement.

Many factors have effects on the dynamic responses of the shell subjected to moving loads. The main
parameters are the velocities of moving loads, volume fraction exponents @ of FGMs and temperatures.

To investigate the effect of the velocities of moving loads, a row of loads (the number of moving loads
Np = 200) with equal intervals L move along the longitudinal axis at the same moving velocity V. Fig. 4 shows
the variation of the maximum dynamic response with the velocity of moving loads. wyx(x1, 01, ) represents
the maximum radial response at the point (x, 0, z) of the shell as the loads traverse the shell (and also passes
this position), while ¢, (x1, 01, z, t) represents the maximum sensory electric potential of the same point. In
Fig. 4, the maximum response of the shell shows three predominant peaks, which correspond to the first, the
second and the third critical velocities (V! =455m/s, V2 =490m/s, V2 = 610m/s). According to the
governing equations (29), the first three critical velocities can also be defined as [20]

(,L),‘L
T

Ve = (36)
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Fig. 4. Maximum transient responses for different moving velocities V: (a) radial response wmax (X1, 01, f) and (b) sensory electric potential
Pmax(x1,01,2,0) (L/R = 4.0, ? = 1.0).

where w; (i = 1,2,3) is the i-th natural frequency of the shell (see Eq. (30)). The results calculated from Eq. (36)
are agreement with the numerical results in Fig. 4. From this study, it is clear that the shell does not have
enough time to reach its maximum responses as the speed of moving loads increases and the number Np of
moving loads decreases.

Fig. S describes the effect of the material property of the FGM layer on dynamic responses of the shell. It is
seen from Fig. 5 that the response amplitude of the shell subjected to a moving load (Np = 1) decreases with
the increases of volume fraction exponent @ of the FGM layer. But when the volume fraction exponent @ is
larger, such as for @ = 5 and 10, the results are almost equal. This is due to the fact that the ceramic (zirconia)
content in the FGM layer increases as the value of @ increases, and the elastic modulus of the ceramic,
zirconia, is much larger as compared to their metal counterpart (aluminum). The material properties exhibit
small variations when the volume fraction exponent @ is larger, and when & = oo, the FGM layer is fully
zirconia. Designers may obtain the desirable dynamic characteristics adequate to design purpose as they
choose the volume fraction exponents @ appropriately. A free vibration can also be observed after the load
departs from the shell.

Since the heat flux is applied to the inner surface of the shell, maximum temperature occurs at the inside
surface. Fig. 6 shows the radial response and sensory electric potential induced from a moving load and an
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Fig. 5. Influence of different volume fraction exponents @ on dynamic responses of the shell subjected to a moving load: (a) radial
response w(xy, 01, ¢) and (b) sensory electric potential ¢(x,0,z,¢) (L/R=4.0, & = 1.0, V= 50m/s).

applied thermal load. The temperature differences 7',y between the inner surface and the outer surface of the
shell are taken as 0, 200, 300 and 400 °C, respectively. As the thermal loading increases, the amplitudes of
vibration also increase.

In addition, the radial response and sensory electric potential exhibit the same variation in Figs. 4 and 5.
This is due to the fact that temperature effects are not considered in these figures (¢,..6(f) = 0, see Eq. (28)),
and the generalized coordinates {un(?) Vpn(?) Wyn(t) @,,,() C/_S,,m(t)}T and induced electric potential
coefficient ,,,(¢) exhibit the same variation with time ¢ for the forced vibration. When ¢,,,,(#)#0 (T #0
see Fig. 6), the variation of induced electric potential coefficient ,,,(¢) is not different with that of the
generalized coordinates.

3.3. Simple validation of the present method

Because few detailed reports on the dynamic behavior of the FGM cylindrical shell with piezoelectric layer
are available in previous literatures, an exact comparison of the present result with existed results is difficult.
To verify the present analysis, vibration frequencies of a simple supported silicon nitride-nickel FGM
cylindrical shell are computed using the present method (Table 2). The geometric properties are L/R = 1 and
R/h = 100. The nondimensionalized fundamental frequencies P (P; = 4nRw+/1,/A11) are compared to those
presented by Ng et al. [37]. Excellent agreement in Table 2 is observed with Ng et al.
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Fig. 6. Influence of different applied thermal loads on dynamic responses of the shell subjected to a moving load: (a) radial response
w(x1, 01, ) and (b) sensory electric potential ¢(x,0;,z,17) (L/R = 4.0, ® = 1.0, V' = 80m/s).

Table 2
Comparison of the non-dimensionalized fundamental frequencies P; for a simply supported silicon nitride-nickel FGM cylindrical shell
subjected to axial compressive loading of Ny = 0.5N,.

'3 Py (type Bym=1,n=1 Py (type Bym=1,n=2
Present Ng et al. Present Ng et al.

0 10.371606 10.393196 7.908486 7.9345878
0.5 10.513124 10.526190 8.001219 8.0542139
1.0 10.571836 10.583092 8.083749 8.1037601
5.0 10.662965 10.673575 8.162233 8.1799865
10.0 10.678231 10.689887 8.174746 8.1931948
0 10.692909 10.707442 8.186364 8.2071402

4. Conclusions

This paper reports the results of an investigation into the dynamics characteristics of FGM cylindrical shells
with surface-bonded PZT piezoelectric layer, and under moving loads. Some main consequences are given by
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(1) As the axial half-waves m (m<4) increases, the lowest fundamental frequency occurs at larger
circumferential mode n. When m>=5, the fundamental frequency of the FGM cylindrical shell with
surface-bonded piezoelectric layer increases as the circumferential mode n increases.

(2) The fundamental frequency of the FGM cylindrical shell with surface-bonded piezoelectric layer decreases
as the axial compressive load increases. The piezoelectric effect of piezoelectric layer can increase the
fundamental frequency of FGM structures.

(3) The effect of volume fraction exponent of the FGM layer on dynamic responses is obvious only when the
volume fraction exponent @ is less than 5. When the volume fraction exponent @ is larger than 5, the
results are already very close to those associated with @ = oo.

(4) The amplitudes of dynamic responses of the shell are significantly influenced by temperature change. As
the thermal loading increases, the amplitudes of vibration also increase.

To obtain more accurate results, future research should consider the variation of displacement distributions

(not a constant transversal displacement) across the shell thickness [13,14], especially for thick FGM
structures.
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