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Abstract

Based on the first-order shear deformation theory (FSDT), the Hamilton’s principle and the Maxwell equation, this

paper presents the coupling equations to govern the electric potential and the displacements of the functionally graded

cylindrical shell with surface-bonded PZT piezoelectric layer, and subjected to moving loads. The frequencies equations are

obtained by using displacement functions and one electric potential function. The modal analysis technique and

Newmark’s integration method are used to calculate the displacements and sensory electric potential of the shell subjected

to moving loads. The effects of the moving velocities of the loads, volume fraction exponents F of functionally graded

materials (FGMs) and temperature environment on the dynamic responses of shells are investigated. An analytical

approximate equation is obtained to describe the relationship between critical velocities of moving loads and natural

frequencies of shells. The present approach is validated by comparing the natural frequencies with the result presented by

Ng et al. In addition, numerical results show the relationship between the displacements and sensory electric potential of

the shell. The present work shows that some meaningful and interesting results presented in this paper are helpful for the

application and the design of smart sensory structures.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Smart structures, consisting of piezoelectric materials integrated with structural systems, have been an
important research object since many years due to their unique feature to couple electric and mechanical
characteristics. In recent years, the development of integration of piezoelectric materials to the composite
structures is paid special attentions to their potential applications of aerospace and aircraft structures, civil
structures, marine and automobiles which require intelligent functions [1,2]. A smart structure that contains
the main structure and the distributed piezoelectric sensor/actuators can sense the excitations induced by its
environment and can also generate control forces to eliminate the undesirable effects or to enhance the
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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desirable effects. Yang et al. [3] developed a generic electromechanical impedance model for the two-
dimensional PZT—structure interaction systems. To closely simulate the real situation, the PZT transducers
were assumed to interact with the host structure at four edges. The results for a plate structure were in good
agreement with the experimental measurements. Yang and Hu [4] presented an electromechanical impedance
model for health monitoring of cylindrical shell structures. By investigating the interaction between the PZT
transducers and a typical cylindrical shell structure, the electromechanical impedance of the PZT transducers
is obtained. Several analytical and finite element studies have been presented for hybrid beams and plates with
thickness poled actuators [5,6]. D’Ottavio et al. [7] solved the free-vibration problem of multilayered shells
with embedded piezoelectric materials. Closed-form solutions are given for the free-vibration problem of
simply supported, orthotropic piezoelectric laminates. The formulations are applied to study the influence
of the electromechanical coupling on the resonant frequencies. Vel et al. [8] presented an analytical solution
for the static deformation and steady-state vibration of simply supported hybrid cylindrical shells consisting of
fiber-reinforced layers with embedded piezoelectric shear sensors and actuators. Suitable displacement and
electric potential functions that identically satisfy the boundary conditions at the simply supported edges are
used to reduce the governing equations of static deformation and steady-state vibrations. Besides, temperature
variation can bring about voltage or charge generation in piezoelectric sensors [9], which is referred to as
pyroelectric effect. Tzou et al. [10] found from their numerical studies that temperature variation considerably
influences the electric potential distribution on both piezoelectric sensor and actuator layers.

Due to the advantages of being able to withstand severe high-temperature gradient while maintaining
structural integrity, functionally graded materials (FGMs) have been receiving much more attention in
engineering communities, especially in applications for high-temperature environment [11,12]. Some
researchers have developed various approximated theories and computation methods for FGM structures.
The extension of the unified formulation (UF) to FGM structures was provided in Refs. [13,14]. Comparisons
with three-dimensional solutions confirmed the efficiency of the extension of UF to FGM structures analysis,
even for very thick structures.

Piezoelectric FGM structures will have the advantages of FGMs and piezoelectric materials linked together.
Hybrid piezoelectric FGM structures are one type of FGM piezoelectric structures, where a substrate made of
FGMs is integrated with surface-bonded piezoelectric actuator and/or sensor layers.

Mirzavand and Eslami [15] presented a thermal buckling analysis for functionally graded cylindrical shells
that are integrated with surface-bonded piezoelectric actuators and are subjected to the combined action of
thermal load and constant applied actuator voltage. He et al. [16] studied the vibration control of the FGM
plates with integrated piezoelectric sensors and actuators by a finite element formulation based on the classical
laminated plate theory. Ng et al. [17], Liew et al. [18,19] have explored the application of piezoelectric
sensor–actuator for active control of vibration of FGMs structural members both under ambient conditions as
well as varying temperature environment.

Dynamical problems of beams, plates and cylindrical shells subjected to an action of moving loads already
have a long history in mechanics [20–25]. A moving load causes the radial displacements of an axi-symmetric
shell to be several times higher than that produced by the static application of the same load [26]. On the other
hand, the moving sources (e.g., heat fluid-conveying, impacting waves, the moving of heat field and work
pieces during machining operations etc.) will often occur in the rocket, aircraft, nuclear vessels and chemical
pipes, as well as the industry of shipbuilding.

In this study, the deformation of FGM shells with piezoelectric layers is to satisfy the limitation of first-
order shear deformation theory (FSDT), in which material properties of FGM are considered as graded across
the shell thickness according to a power-law, in terms of the volume fractions of the constituents. For the
piezoelectric layer, temperature distribution is linear across its thickness, and for the FGM layer, temperature
distribution is nonlinear. The Hamilton’s principle, the Maxwell equation and the FSDT considering rotary
and in-plane inertias have been utilized to model the dynamics characteristic of FGM cylindrical shells with
surface-bonded PZT piezoelectric layers, and subjected to moving loads. By using the modal analysis
technique and Newmark’s integration method, a better approximation is obtained, and a faster convergence
method is achieved for the dynamic responses of FGM cylindrical shells subjected to moving loads. Finally,
the natural frequencies from the present method are compared with those results found in the open literature,
and a good comparison is obtained between the results.
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2. Theoretical formulations

An FGM cylindrical shell with mean radius of R and the length L is shown in Fig. 1. A deformable
piezoelectric layer is perfectly bonded on its outer surface as sensor. The z-axis is the thickness coordinate for
both piezoelectric layer and FGM layer. The thickness of the FGM layer is denoted by h and that of the
piezoelectric layer is hP. The piezoelectric layer is polarized along the thickness direction. The displacement
components in the x, y and z directions are denoted by u, v and w, respectively.

The material properties of FGM cylindrical shells are accurately modeled, by using a simple rule of
mixtures. The volume fraction is described by a spatial function as follows:

CðzÞ ¼
zþ h=2

h

� �F

ð0pFp1Þ (1)

where F expresses the volume fraction exponent. The combination of these functions gives rise to the effective
properties of FGMs [11]. The temperature change referenced to the stress free state (the room temperature T0)
is considered as

DTðx; y; z; tÞ ¼ Gðx; y; tÞTðzÞ

The stress resultants of the FGM layer are given by
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Fig. 1. Coordinate system of the FGM cylindrical shell with surface-bonded PZT layer under moving loads.
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where the effective elasticity coefficients Qij(z) and thermal expansion coefficients aeff ðzÞ of the FGM layer are
given by Kadoli and Ganesan [27]. �x, �y, gxy, gxz and gyz is the mid-surface strains of the FGM layer, kx, ky
and kxy is the mid-surface curvatures.

According to the state of generalized plane stress of the thin shell assumption [28], the constitutive
equations of piezoelectric layer can be expressed by the direct and the converse piezoelectric equations,
respectively.
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Effective constants of the piezoelectric layer are given by
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where �̄x, �̄y, ḡxy, ḡxz and ḡyz is the strains of an arbitrary point in the piezoelectric layer, and sP
x , s

P
y , t

P
xy, t

P
yz and

tP
xz is the corresponding stresses. fDx Dy Dzg

T , fEx Ey Ezg
T and fpx py pzg

T represent the electric
displacements, electric fields and pyroelectric constants of the piezoelectric layer, respectively. QP

ij , eij , xij

and aij denote the elastic constants, piezoelectric constants, dielectric constants and thermal expansion
coefficients, respectively.
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In the above formula, the electric fields are expressed as a function of the electric potential j in the
curvilinear coordinate system as follows:

Ex ¼ �
qj
qx
; Ey ¼ �

1

Rþ z

qj
qy
; Ez ¼ �

qj
qz

(6)

The piezoelectric layer considered in this paper take as a sensor and the electric potential is induced by
elastic deformation in the piezoelectric layer. The distribution of electric potential in the piezoelectric layer is
given by [29]

jðx; y; z; tÞ ¼ PðzPÞcðx; y; tÞ (7)

zP is the local thickness coordinate with respect to the piezoelectric layer mid-plane, zP ¼ z� z0,
z0 ¼ ðhþ hPÞ=2. The function PðzPÞ is defined by

PðzPÞ ¼ z2P �
hP

2

� �2

(8)

The strains of an arbitrary point �̄x, �̄y, ḡxy, ḡxz and ḡyz in Eqs. (4) and (5) are related to the mid-surface
strains and curvatures of the FGM layer [27]. The stress resultants of piezoelectric layer are computed using
Eq. (4) as follows:

NP
x

NP
y

NP
xy

MP
x

MP
y

MP
xy

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
¼

AP
11 AP

12 0 BP
11 BP

12 0

AP
21 AP

22 0 BP
21 BP

22 0

0 0 AP
66 0 0 BP

66

BP
11 BP

12 0 DP
11 DP

12 0

BP
21 BP

22 0 DP
21 DP

22 0

0 0 BP
66 0 0 DP

66

2
6666666664

3
7777777775

�x

�y

gxy

kx

ky
kxy

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
�

NPT
x

NPT
y

NPT
xy

MPT
x

MPT
y

MPT
xy

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
þ

NE
x

NE
y

NE
xy

ME
x

ME
y

ME
xy

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

(9)

QP
x

QP
y

( )
¼

CP
44 0

0 CP
55

" #
gxz

gyz

( )
þ

QE
x

QE
y

( )
(10)

ðAP
ij ;B

P
ij ;D

P
ij Þ ¼

Z h=2þhP

h=2
Qijeð1; z; z

2Þdz ði; j ¼ 1; 2; 6Þ

CP
44 ¼

Z h=2þhP

h=2
Q55e dz; CP

55 ¼

Z h=2þhP

h=2
Q44e dz

where the thermal force resultants of the piezoelectric layer are defined as follows:

NPT
x MPT

x

NPT
y MPT

y

NPT
xy MPT

xy

8><
>:

9>=
>; ¼ Gðx; y; tÞ

Z h=2þhP

h=2

ðQ11ea11e þQ12ea22eÞ

ðQ12ea11e þQ22ea22eÞ

0

8><
>:

9>=
>;ð1 zÞTðzÞdz

The piezoelectric resultants of the piezoelectric layer are defined as follows:
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As shown in Fig. 1, a row of loads PiðtÞ ði ¼ 1; 2; . . . ;NPÞ move along the longitudinal axis at constant
speed V . The load function pðx; tÞ describing the action on the shell is expressed as [30]

pðx; tÞ ¼
XNP

i¼1

PiðtÞdðx� xiÞdðy� y0ÞUiðtÞ (11)

where

UiðtÞ ¼ H1ðt� ti�1Þ½1�H2ðt� ti�1 � tLÞ�

xi ¼ V ðt� ti�1Þ ð0pxipLÞ; tL ¼ L=V

d(.) denotes Dirac delta function, HiðtÞ ði ¼ 1; 2Þ denotes Heaviside unit step function, (xi,y0) denotes
the location of the moving load PiðtÞ at time t, and ti�1 denotes arriving time of the i-th load at the shell.
The corresponding work of the moving loads can be expressed as [24]

W P ¼

Z
A
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The potential energy V N0
of the axial loading (N0) is taken as [31]
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For thin shells, as are the cases used here, the transversal displacement is assumed to be constant
through the thickness. Based on the FSDT and Hamilton’s principle, the equations of motion for an FGM
cylindrical shell with surface-bonded piezoelectric layer under axially load N0 and moving loads are as
follows [28]:
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where fx and fy are the slope in-plane of x�z and y–z, respectively. The strains, curvature expressions and
mass terms of Eqs. (2), (3), (9), (10) and (14) are defined as
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reff ðzÞ is the effective mass density of the FGM layer, and rP is the mass density of the piezoelectric layer.
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Utilizing Eqs. (2), (3), (9), (10) and (15), the equations of motion can be expressed in terms of generalized
displacement ðu; v;w;fx;fyÞ as follows:

L11uþ L12vþ L13wþ L14fx þ L15fy þ L16cþ a1G0x ¼ ðI1 þ IP
1 Þ €uþ ðI2 þ IP

2 Þ
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The Maxwell equation [8] is Z h=2þhP
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Utilizing Eq. (5), the charge equilibrium Eq. (18) can be expressed as follows:

L61uþ L62vþ L63wþ L64fx þ L65fy þ L66c ¼ a61G0x þ a62G0y þ a63G (19)

where Lij ði; j ¼ 1; 2; . . . ; 6Þ and some coefficients in Eqs. (17) and (19) are defined in Appendix A.
Here, the two ends of the FGM cylindrical shell with surface-bonded piezoelectric layer are considered as

simply supported, so that a solution for the motion Eqs. (17) and the charge equilibrium Eq. (19) can be
described by

u ¼
XM
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where lm ¼ mp=L, n represents the number of circumferential waves and m represents the number of axial
half-waves.

The generalized forces related to the thermal load in Eqs. (17) and (19) can also be expanded in double
Fourier series
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Substituting Eqs. (20) and (21) into Eqs. (17) and (19), yields:
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2 Þ
€fmnðtÞ þ T11umnðtÞ þ T12vmnðtÞ
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ðI1 þ IE
1 Þ €wmnðtÞ þ T31umnðtÞ þ T32vmnðtÞ þ ½T33 þ l2mN0�wmnðtÞ þ T34fmnðtÞ

þ T35f̄mnðtÞ þ T36cmnðtÞ ¼ qmn3ðtÞ þ
2

pL

XNP

i¼1

PiðtÞ sin lmxiðtÞ cos ny0 (24)

ðI2 þ IE
2 Þ €umnðtÞ þ ðI3 þ IE

3 Þ
€fmnðtÞ þ T41umnðtÞ þ T42vmnðtÞ

þ T43wmnðtÞ þ T44fmnðtÞ þ T45f̄mnðtÞ þ T46cmnðtÞ ¼ qmn4ðtÞ (25)

ðI2 þ IE
2 Þ €vmnðtÞ þ ðI3 þ IE

3 Þ
€̄fmnðtÞ þ T51umnðtÞ þ T52vmnðtÞ

þ T53wmnðtÞ þ T54fmnðtÞ þ T55f̄mnðtÞ þ T56cmnðtÞ ¼ qmn5ðtÞ (26)

T61umnðtÞ þ T62vmnðtÞ þ T63wmnðtÞ þ T64fmnðtÞ þ T65f̄mnðtÞ þ T66cmnðtÞ ¼ qmn6ðtÞ (27)

where the unknown constants Tij can be determined by operators Lij in Eqs. (17) and (19).
From the Eq. (27), the induced electric potential coefficient cmnðtÞ is obtained as follows:

cmnðtÞ ¼
1

T66
½qmn6ðtÞ � T61umnðtÞ � T62vmnðtÞ � T63wmnðtÞ � T64fmnðtÞÞ � T65f̄mnðtÞ� (28)

Substituting Eq. (28) into Eqs. (22)–(26), the following governing equations are obtained:

½M�f €qg þ ½KE � �
1

T66
fKP1gfKP2g

T

� �
fqg ¼ fFMg þ fF T g þ fFTPg (29)

where

½M� ¼

I1 þ IP
1 0 0 I2 þ IP

2 0

0 I1 þ IP
1 0 0 I2 þ IP

2

0 0 I1 þ IP
1 0 0

I2 þ IP
2 0 0 I3 þ IP

3 0

0 I2 þ IP
2 0 0 I3 þ IP

3

2
6666664

3
7777775

½KE � ¼

T11 T12 T13 T14 T15

T21 T22 þ l2mN0 T23 T24 T25

T31 T32 T33 þ l2mN0 T34 T35

T41 T42 T43 T44 T45

T51 T52 T53 T54 T55

2
6666664

3
7777775

fKP1g
T ¼ fT16 T26 T36 T46 T56g; fKP2g

T ¼ fT61 T62 T63 T64 T65g

fqg ¼ fumn vmn fmn f̄mng
T

fFMg
T ¼ 0 0

2

pL

XNP

i¼1

PiðtÞ sin lmxiðtÞ cos ny0 0 0

( )

fF T g
T ¼ fqmn1ðtÞ qmn2ðtÞ qmn3ðtÞ qmn4ðtÞ qmn5ðtÞg

fFTPg ¼ �
1

T66
fKP1gqmn6ðtÞ

fFMg
T , fF T g

T and fFTPg are the generalized forces related to the moving loads, the thermal load and the
thermo-piezoelectric coupling, respectively.
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We set fFg ¼ fF Mg þ fFT g þ fF TPg ¼ 0, and substitute

umnðtÞ ¼ u0
mne

iot; vmnðtÞ ¼ v0mne
iot; wmnðtÞ ¼ w0

mne
iot; . . .

into Eq. (29) and obtain the following 5� 5 system of eigenvalue problem:

ð½K � � o2½M�ÞfDg ¼ f0g (30)

where fDgT ¼ fu0
mn v0mn w0

mn f0
mn f̄

0

mng, the nontrivial solution of the eigen-equation (30) gives the natural
frequencies of the FGM cylindrical shell with surface-bonded piezoelectric layer.

3. Numerical results and discussions

The magnitudes of the moving loads in this paper are identical ðPiðtÞ ¼ P0 ¼ constantÞ. The generalized
forces related to the moving loads, the thermal load and the thermopiezoelectric coupling are
expressed as

fF Mg
T ¼ 0 0

2P0

pL

XNP

i¼1

sin lmxiðtÞ cos ny0 0 0

( )

fF T g
T ¼

0 0
4a3

pm
½1� ð�1Þm�GðtÞ 0 0

� �
n ¼ 0

f0 0 0 0 0g na0

8><
>:

fF TPg ¼ �
1

T66
fKP1gqmn6ðtÞ ¼

�
1

T66
fKP1g

4a63

pm
½1� ð�1Þm�GðtÞ n ¼ 0

0 na0

8<
:

In this study, in-plane uniform distribution of temperature is considered as

Gðx; y; tÞ ¼ GðtÞ ðDTðx; y; z; tÞ ¼ TðzÞGðtÞÞ (31)

The temperature distribution along the thickness of the shell can be obtained by solving a steady-state heat
transfer equation [32]. For the piezoelectric layer, temperature distribution across the thickness is considered
as linear:

TðzÞ ¼ Tm þ
T0 � Tm

hP

z�
h

2

� �
� T0

h

2
pzp

h

2
þ hP

� �
(32)

and for the FGM layer:

TðzÞ ¼ Tc �
Tc � TmR h=2

�h=2 dz=keff ðzÞ

Z z

�h=2

dz

keff ðzÞ
� T0 �

h

2
pzp

h

2

� �
(33)

where Tc, Tm are the temperature of the inner surface and the outer surface of the FGM layer, respectively.
keff is the effective thermal conductivity of the FGM layer. T0 is the room temperature (zero thermal stress
state, T0 ¼ 300K). Tm can be obtained by utilizing the temperature continuous conditions between the FGM
layer and piezoelectric layer, and the heat transfer equation. The temperature difference between the inner
surface and the outer surface of the shell is Tc0 ¼ Tc � T0.

The ceramic and the metal materials of the functionally graded layer in this study are considered as zirconia
and aluminum [28]. The properties for the two materials are listed as

Aluminum

Em ¼ 70GPa; nm ¼ 0:3; rm ¼ 2707 kg=m3; km ¼ 204W=mK; am ¼ 23� 10�6 �C

Zirconia

Ec ¼ 151GPa; nc ¼ 0:3; rc ¼ 3000 kg=m3; kc ¼ 2:09W=mK; ac ¼ 10� 10�6 �C



ARTICLE IN PRESS
G.G. Sheng, X. Wang / Journal of Sound and Vibration 323 (2009) 772–789 781
The piezoelectric layer is made of PZT-4. The material constants are given by Ramirez et al. [33] and
Ganesan and Kadoli [34]. The other calculation data are given by

R ¼ 1m; h=R ¼ 0:01; hP=R ¼ 0:001; P0 ¼ 50KN; y0 ¼
p
4
; GðtÞ ¼ sin 100t.

3.1. Free-vibration studies on the FGM shell with surface-bonded piezoelectric layer

Free-vibration natural frequency characteristics are presented for the FGM shell with surface-bonded
piezoelectric layer, and the effects of wavenumber and axial compressive load on the free-vibration natural
frequencies of the shell are investigated.

For cylindrical shells of intermediate length, as are the cases used here, the buckling load is given by
Timoshenko and Gere [35]

N0cr ¼
Eh2

R½3ð1� u�1=2
(34)

and the axial load can be nondimensionalized as N̄0 ¼ N0=N0cr, and E, u are the material constants of
Aluminum in Eq. (34). The nondimensional natural frequencies O is defined as [36]

O2 ¼ ðI1R
2=EÞo2; E ¼ Emh=ð1� u2mÞ (35)

From Fig. 2, it is seen that as the axial half-waves m (mp4) increases, the lowest fundamental frequency gets
shifted to the right-hand side of the curve. The behavior is similar to conventional shells [36]. When vibration
modes (m, n) are (1,1), (2,1), (3,1) and (4,1), the fundamental frequencies are almost same. Moreover, when
mX5, the fundamental frequency of the FGM cylindrical shell with surface-bonded piezoelectric layer
increases as the circumferential mode n increases, which are not agreement with those for homogeneous
isotropic cylindrical shells presented by Radwan et al. [36].

It is clear from the results in Table 1 that when the ratio of length to radius L/R of the cylindrical shell
increases, the fundamental frequency decreases. It can also be observed in Table 1 that the effect of
piezoelectric layer on the fundamental frequency is obvious.

3.2. Displacements and sensory response of the shell under moving loads

In this paper, the initial conditions are supposed to be zero, and dynamic responses at the point (x1 ¼ L/2,
y1 ¼ p/4, z ¼ (h+hP)/2) are obtained. Fig. 3 shows convergence of time response wðx1; y1; tÞ under a moving
0

0.4

0.8

1.2

1.6

2.0

2.4

Ω

n

m = 1 m = 2
m = 3 m = 4
m = 5 m = 6

2 4 6 8 10 12 14 16 18

Fig. 2. Nondimensional natural frequency (O) versus vibration modes (m, n) for the FGM cylindrical shell with surface-bonded

piezoelectric layer (N0 ¼ 0:5Ncr, L=R ¼ 1:0, F ¼ 1:0).
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Table 1

Non-dimensional natural frequency O versus non-dimensional axial compressive load N0/Ncr for the FGM cylindrical shell with surface-

bonded piezoelectric layer (m ¼ 1, n ¼ 1, F ¼ 1.0).

L/R N0/Ncr

0.0 0.2 0.4 0.6 0.8

Elastic effect only 1.0 0.9363 0.9319 0.9276 0.9232 0.9188

Piezoelectric effect 0.9403 0.9359 0.9316 0.9272 0.9228

Elastic effect only 1.1 0.9118 0.9081 0.9044 0.9007 0.8970

Piezoelectric effect 0.9150 0.9114 0.9077 0.9039 0.9002

Elastic effect only 1.2 0.8846 0.8814 0.8782 0.8750 0.8718

Piezoelectric effect 0.8873 0.8841 0.8809 0.8777 0.8745
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Fig. 3. The convergence of time response wðx1; y1; tÞ for various M and N (L/R ¼ 4.0, F ¼ 1:0, V ¼ 80m/s).
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load (NP ¼ 1). The time responses are calculated for M,N ¼ 6, 10, 15 and 20 in model expansion, respectively.
It is concluded that the series (see Eq. (20)) is able to provide a good approximation for the response, and the
results using the series converge fast. All the plots are drawn for M,N ¼ 15, because the time responses
obtained from M,N ¼ 15 and 20 in modal expansion are approximately in good agreement.

Many factors have effects on the dynamic responses of the shell subjected to moving loads. The main
parameters are the velocities of moving loads, volume fraction exponents F of FGMs and temperatures.

To investigate the effect of the velocities of moving loads, a row of loads (the number of moving loads
NP ¼ 200) with equal intervals L move along the longitudinal axis at the same moving velocity V. Fig. 4 shows
the variation of the maximum dynamic response with the velocity of moving loads. wmaxðx1; y1; tÞ represents
the maximum radial response at the point ðx1; y1; zÞ of the shell as the loads traverse the shell (and also passes
this position), while jmaxðx1; y1; z; tÞ represents the maximum sensory electric potential of the same point. In
Fig. 4, the maximum response of the shell shows three predominant peaks, which correspond to the first, the
second and the third critical velocities (V1

cr ¼ 455m=s, V 2
cr ¼ 490m=s, V3

cr ¼ 610m=s). According to the
governing equations (29), the first three critical velocities can also be defined as [20]

Vi
cr ¼

oiL

p
(36)
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where oi (i ¼ 1,2,3) is the i-th natural frequency of the shell (see Eq. (30)). The results calculated from Eq. (36)
are agreement with the numerical results in Fig. 4. From this study, it is clear that the shell does not have
enough time to reach its maximum responses as the speed of moving loads increases and the number NP of
moving loads decreases.

Fig. 5 describes the effect of the material property of the FGM layer on dynamic responses of the shell. It is
seen from Fig. 5 that the response amplitude of the shell subjected to a moving load (NP ¼ 1) decreases with
the increases of volume fraction exponent F of the FGM layer. But when the volume fraction exponent F is
larger, such as for F ¼ 5 and 10, the results are almost equal. This is due to the fact that the ceramic (zirconia)
content in the FGM layer increases as the value of F increases, and the elastic modulus of the ceramic,
zirconia, is much larger as compared to their metal counterpart (aluminum). The material properties exhibit
small variations when the volume fraction exponent F is larger, and when F ¼N, the FGM layer is fully
zirconia. Designers may obtain the desirable dynamic characteristics adequate to design purpose as they
choose the volume fraction exponents F appropriately. A free vibration can also be observed after the load
departs from the shell.

Since the heat flux is applied to the inner surface of the shell, maximum temperature occurs at the inside
surface. Fig. 6 shows the radial response and sensory electric potential induced from a moving load and an
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applied thermal load. The temperature differences Tc0 between the inner surface and the outer surface of the
shell are taken as 0, 200, 300 and 400 1C, respectively. As the thermal loading increases, the amplitudes of
vibration also increase.

In addition, the radial response and sensory electric potential exhibit the same variation in Figs. 4 and 5.
This is due to the fact that temperature effects are not considered in these figures (qmn6(t) ¼ 0, see Eq. (28)),
and the generalized coordinates fumnðtÞ vmnðtÞ wmnðtÞ fmnðtÞ f̄mnðtÞg

T and induced electric potential
coefficient cmnðtÞ exhibit the same variation with time t for the forced vibration. When qmn6ðtÞa0 (Tc0a0
see Fig. 6), the variation of induced electric potential coefficient cmnðtÞ is not different with that of the
generalized coordinates.
3.3. Simple validation of the present method

Because few detailed reports on the dynamic behavior of the FGM cylindrical shell with piezoelectric layer
are available in previous literatures, an exact comparison of the present result with existed results is difficult.
To verify the present analysis, vibration frequencies of a simple supported silicon nitride-nickel FGM
cylindrical shell are computed using the present method (Table 2). The geometric properties are L/R ¼ 1 and

R/h ¼ 100. The nondimensionalized fundamental frequencies P1 ðP1 ¼ 4pRo
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1=A11

p
Þ are compared to those

presented by Ng et al. [37]. Excellent agreement in Table 2 is observed with Ng et al.
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Table 2

Comparison of the non-dimensionalized fundamental frequencies P1 for a simply supported silicon nitride–nickel FGM cylindrical shell

subjected to axial compressive loading of N0 ¼ 0:5Ncr.

F P1 (type B) m ¼ 1, n ¼ 1 P1 (type B) m ¼ 1, n ¼ 2

Present Ng et al. Present Ng et al.

0 10.371606 10.393196 7.908486 7.9345878

0.5 10.513124 10.526190 8.001219 8.0542139

1.0 10.571836 10.583092 8.083749 8.1037601

5.0 10.662965 10.673575 8.162233 8.1799865

10.0 10.678231 10.689887 8.174746 8.1931948

N 10.692909 10.707442 8.186364 8.2071402
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4. Conclusions

This paper reports the results of an investigation into the dynamics characteristics of FGM cylindrical shells
with surface-bonded PZT piezoelectric layer, and under moving loads. Some main consequences are given by
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(1)
 As the axial half-waves m (mp4) increases, the lowest fundamental frequency occurs at larger
circumferential mode n. When mX5, the fundamental frequency of the FGM cylindrical shell with
surface-bonded piezoelectric layer increases as the circumferential mode n increases.
(2)
 The fundamental frequency of the FGM cylindrical shell with surface-bonded piezoelectric layer decreases
as the axial compressive load increases. The piezoelectric effect of piezoelectric layer can increase the
fundamental frequency of FGM structures.
(3)
 The effect of volume fraction exponent of the FGM layer on dynamic responses is obvious only when the
volume fraction exponent F is less than 5. When the volume fraction exponent F is larger than 5, the
results are already very close to those associated with F ¼ 1.
(4)
 The amplitudes of dynamic responses of the shell are significantly influenced by temperature change. As
the thermal loading increases, the amplitudes of vibration also increase.
To obtain more accurate results, future research should consider the variation of displacement distributions
(not a constant transversal displacement) across the shell thickness [13,14], especially for thick FGM
structures.
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Appendix A

Āij ¼ AP
ij þ Aij ; B̄ij ¼ BP

ij þ Bij ; C̄ij ¼ CP
ij þ Cij ; D̄ij ¼ DP

ij þDij
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q2

qx2
þ
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Ā66
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½Q12ea11e þQ22ea22e�TðzÞdz

a3 ¼
1

R

Z h=2

�h=2
½Q12ðzÞ þQ22ðzÞ�aeff ðzÞTðzÞdzþ

1

R

Z h=2þhP

h=2
½Q12ea11e þQ22ea22e�TðzÞdz

a4 ¼ �

Z h=2

�h=2
½Q11ðzÞ þQ12ðzÞ�aeff ðzÞTðzÞzdz�

Z h=2þhP

h=2
½Q11ea11e þQ12ea22e�TðzÞzdz

a5 ¼ �
1

R

Z h=2

�h=2
½Q12ðzÞ þQ22ðzÞ�aeff ðzÞTðzÞzdz�

1

R

Z h=2þhP

h=2
½Q12ea11e þQ22ea22e�TðzÞzdz

a61 ¼

Z h=2þhP

h=2
TðzÞpxe dz; a62 ¼

1

R

Z h=2þhP

h=2
TðzÞpye dz; a63 ¼

Z h=2þhP

h=2
T 0ðzÞpze dzþ

1

R

Z h=2þhP

h=2
TðzÞpze dz
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Journal of Thermal Stresses 31 (2008) 286–308.

[15] B. Mirzavand, M.R. Eslami, Thermal buckling of simply supported piezoelectric FGM cylindrical shells, Journal of Thermal Stresses

30 (2007) 1117–1135.

[16] X.Q. He, T.Y. Ng, S. Sivashanker, K.M. Liew, Active control of FGM plates with integrated piezoelectric sensors and actuators,

International Journal of Solids and Structures 38 (2001) 1641–1655.

[17] T.Y. Ng, X.Q. He, K.M. Liew, Finite element modeling of active control of functionally graded shells in frequency domain via

piezoelectric sensors and actuators, Computational Mechanics 28 (2002) 1–9.

[18] K.M. Liew, X.Q. He, T.Y. Ng, S. Sivashanker, Active control of FGM plates subjected to a temperature gradient; modelling via finite

element method based on FSDT, International Journal for Numerical Methods in Engineering 52 (2001) 1253–1271.

[19] K.M. Liew, X.Q. He, T.Y. Ng, S. Kitipornchai, Active control of FGM shells subjected to a temperature gradient via piezoelectric

sensor/actuator patches, International Journal for Numerical Methods in Engineering 55 (2002) 653–668.

[20] L. Fryba, Vibration of Solids and Structures Under Moving Loads, Noordhoff International, Groningen, The Netherlands, 1977.

[21] S.S. Law, Y.L. Fang, Moving force identification: optimal state estimation approach, Journal of Sound and Vibration 239 (2001)

233–254.

[22] X.Q. Zhu, S.S. Law, J.Q. Bu, A state space formulation for moving loads identification, Journal of Vibration and Acoustics 128 (2006)

509–520.

[23] X.Q. Zhu, S.S. Law, Dynamic behavior of orthotropic rectangular plates under moving loads, Journal of Engineering Mechanics 129

(2003) 79–87.

[24] S.S. Law, J.Q. Bu, X.Q. Zhu, S.L. Chan, Moving load identification on a simply supported orthotropic plate, International Journal of

Mechanical Sciences 49 (2007) 1262–1275.

[25] V.A. Krysko, J. Awrejcewicz, A.N. Kutsemako, K. Broughan, Interaction between flexible shells (plates) and a moving lumped body,

Communications in Nonlinear Science and Numerical Simulation 11 (2006) 13–43.

[26] M. Ruzzene, A. Baz, Dynamic stability of periodic shells with moving loads, Journal of Sound and Vibration 296 (2006)

830–844.

[27] R. Kadoli, N. Ganesan, Buckling and free vibration analysis of functionally graded cylindrical shells subjected to a temperature-

specified boundary condition, Journal of Sound and Vibration 289 (2006) 450–480.

[28] J.N. Reddy, Mechanics of Laminated Composite Plates and Shells, second ed., CRC Press, New York, 2004.

[29] A. Fernandes, J. Pouget, Structural response of composite plates equipped with piezoelectric actuators, Computers and Structures 84

(2006) 1459–1470.

[30] J.D. Yau, L. Fryba, Response of suspended beams due to moving loads and vertical seismic ground excitations, Engineering

Structures 29 (2007) 3255–3262.

[31] C.W. Lim, Y.F. Ma, S. Kitipornchai, C.M. Wang, R.K.K. Yuen, Buckling of vertical cylindrical shells under combined end pressure

and body force, Journal of Engineering Mechanics 129 (2003) 876–884.

[32] Y.W. Kim, Temperature dependent vibration analysis of functionally graded rectangular plates, Journal of Sound and Vibration 284

(2005) 531–549.

[33] F. Ramirez, P.R. Heyliger, E. Pan, Free vibration response of two-dimensional magneto–electro-elastic laminated plates, Journal of

Sound and Vibration 292 (2006) 626–644.



ARTICLE IN PRESS
G.G. Sheng, X. Wang / Journal of Sound and Vibration 323 (2009) 772–789 789
[34] N. Ganesan, R. Kadoli, Semianalytical finite element analysis of piezothermoelastic shells of revolution, Computers and Structures 83

(2005) 1305–1319.

[35] S.P. Timoshenko, J.M. Gere, Theory of Elastic Stability, McGraw-Hill, New York, 1961.

[36] H.R. Radwan, J. Genin, Dynamic instability in cylindrical shells, Journal of Sound and Vibration 56 (1978) 373–382.

[37] T.Y. Ng, K.M. Lam, K.M. Liew, J.N. Reddy, Dynamic stability analysis of functionally graded cylindrical shells under periodic axial

loading, International Journal of Solids and Structures 38 (2001) 1295–1309.


	Studies on dynamic behavior of functionally graded cylindrical shells with PZT layers under moving loads
	Introduction
	Theoretical formulations
	Numerical results and discussions
	Free-vibration studies on the FGM shell with surface-bonded piezoelectric layer
	Displacements and sensory response of the shell under moving loads
	Simple validation of the present method

	Conclusions
	Acknowledgments
	References




